US009172595B2

a2 United States Patent

Stute et al.

US 9,172,595 B2
Oct. 27, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS AND METHODS OF PACKET
OBJECT DATABASE MANAGEMENT

(735)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

Inventors: Michael Roy Stute, Plano, TX (US);
Ary Paul Turner, Mesquite, TX (US)

Assignee:
TX (US)

Notice:

Masergy Communications, Inc., Plano,

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1427 days.

Appl. No.: 12/350,200

Filed: Jan. 7, 2009
Prior Publication Data
US 2009/0177765 Al Jul. 9, 2009

Related U.S. Application Data

Provisional application No. 61/019,529, filed on Jan.

(56) References Cited

U.S. PATENT DOCUMENTS

5,937,168 A * 8/1999 Andersonetal. 1/1
6,473,400 B1* 10/2002 Manning 370/229
6,483,804 B1* 11/2002 Muller etal. 370/230
6,687,732 B1* 2/2004 Bectoretal. 709/200
6,952,824 B1* 10/2005 Hooperetal. 718/100
7,376,125 B1* 5/2008 Hussain et al. 370/352
2002/0051448 Al* 5/2002 Kalkunte et al. 370/389
2005/0018618 Al* 1/2005 Mualemetal. 370/252
2005/0265340 Al* 12/2005 Wuetal. 370/389
2006/0218373 Al* 9/2006 Plondkeetal. 7117220
2007/0011321 Al* 1/2007 Huntington etal. 709/224
OTHER PUBLICATIONS

Unesco and NYU, The Ip Datagram Structure, 08/23/200, pp. 1-8.*

* cited by examiner

Primary Examiner — Taelor Kim
(74) Attorney, Agent, or Firm — McGuireWoods LLP

(57) ABSTRACT

The present disclosure generally provides systems and meth-
ods of packet object database management. The database
management system includes a database server designed spe-
cifically to process binary network packet data. The database
server is associated with a parser, query engine, retrieval

7, 2008.
Int. Cl.

GO6F 7/00 (2006.01)

GO6F 17/00 (2006.01)

HO4L 12/24 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC ... HO4L 41/024 (2013.01); GO6F 17/30607

engine, virtual machine, data manger, and file processor. The
database management system uses a proprietary query lan-
guage to support all accesses to the database. The parser
identifies whether the query is a data management query or if
it is a data retrieval instruction. If the query is a data manage-
ment query, the data manager manages the query request and

(2013.01); HO4L 41/0233 (2013.01)

Field of Classification Search
CPC e

GOGF 17/30607; HO4L 41/0233;

attempts to satisfy the query request. Otherwise, query engine
could further analyze or parse the query into a particular
query structure or sub-structures to attempt to satisfy the

HOAL 41/024

See application file for complete search history.

query request.
11 Claims, 2 Drawing Sheets

300

r'e

‘ RECEIVE QUERY/NETWORK PACKET DATA ‘
302

1

| INDEX QUERY/NETWORK PACKET DATA |
304

‘ PARSE AND CATEGORIZE QUERY TYPE
306

IS THE
QUERY A REQUEST
FOR DATA ONLY?
08

PARSE QUERY INTO
APPROPRIATE QUERY
STRUCTURE
320

1

| SEND QUERY FOR FURTHER PROCESSING ‘ USE
810

THREADS
TO FIND DATA TO EXECUTE

l

QUERY AGAINST

USE THREADS TO FIND QUALIFYING FILE LIST
312

322

[

COMPILE INFORMATION

‘ COMPILE INFORMATION RELATED TO EACH THREAD |
214

RELATED TO EACH
THREAD
824

!

COMPILED INFORMATION
316

CREATE AND MERGE RESULT SETS FROM

POST-PROCESS AND
OUTPUT RESULTS SET

1

326

POST-PROCESS AND QUTPUT RESULT SET
318

END

U.S. Patent Oct. 27, 2015 Sheet 1 of 2 US 9,172,595 B2

DATA MANAGER FILE PROCESSOR
208 210

100
NETWORK e !
RESOURCE OBJECT I | DATABASE | 1
102a ! SERVER :
‘\ NETWORK . 106 |
NETWORK PACKET | |
RESOURCE OBJECT DATA ! :
102h 104 N |
Loy o
I | VIRTUAL ! !
NETWORK ! | MACHINE | |
102¢ LT
L — 0 - = - = 1
FIGURE 1

M6~ ______ ,

| |

|| PARSER QUERY ENGINE RETRIEVAL ENGINE ||

S ;1| 202 204 206 I

| VIRTUAL ! ! y ¥ |

i MACHINE e >l > !

! 108 ; !

| —_ ! |

|

|

|

|

|

|

|

1

| A4
, v

1

|

|

1

E—— e e e, e e e —— 4

FIGURE 2

U.S. Patent

Oct. 27, 2015

(START)

A

RECEIVE QUERY/NETWORK PACKET DATA
302

!

INDEX QUERY/NETWORK PACKET DATA
304

PARSE AND CATEGORIZE QUERY TYPE
306

QUERY A REQUEST NO

Sheet 2 of 2

US 9,172,595 B2

300

FOR DATA ONLY?

SEND QUERY FOR FURTHER PROCESSING
310

Y

USE THREADS TO FIND QUALIFYING FILE LIST
312

v

PARSE QUERY INTO
APPROPRIATE QUERY
STRUCTURE
320

Y

USE THREADS
TO FIND DATA TO EXEGUTE
QUERY AGAINST
322

y

COMPILE INFORMATION RELATED TO EACH THREAD

314

'

CREATE AND MERGE RESULT SETS FROM
COMPILED INFORMATION
316

:

POST-PROCESS AND OUTPUT RESULT SET
318

END

FIGURE 3

COMPILE INFORMATION
RELATED TO EACH
THREAD
324

A

POST-PROCESS AND
OUTPUT RESULTS SET
326

END

US 9,172,595 B2

1
SYSTEMS AND METHODS OF PACKET
OBJECT DATABASE MANAGEMENT

CROSS REFERENCE TO RELATED
APPLICATION

This application claims benefit under 35 U.S.C. §119(e) of
U.S. Provisional Patent Application No. 61/019,529 filed on
Jan. 7, 2008 in the United States Patent and Trademark Office
entitled “Packet Object Database Management System.” The
entire disclosure of U.S. Provisional Patent Application No.
61/019,529 is incorporated by reference as if fully disclosed
herein.

TECHNICAL FIELD

The present disclosure generally relates to information
systems and, in particular, to systems and methods of man-
aging databases associated with binary network packet data.

BACKGROUND

As the amount of data communicated through network
packets increases, the ability to capture the data in a storage
system and evaluate the large volume of data has become a
long and burdensome process. As a result, companies are
increasingly concerned about their ability to store and prop-
erly evaluate the amount of data generated from their net-
works outside of traditional time-consuming and costly pro-
cesses.

There is therefore a need for systems and methods of effi-
ciently and cost effectively providing a database management
system for packet data.

SUMMARY

Embodiments of the present disclosure generally provide
systems and methods of providing network security and
threat management.

In one embodiment, the present disclosure could provide a
system of managing packet data in a network. The system
could include a virtual manager associated with a server. The
virtual manager could parse incoming packet data according
to a query type. The virtual manager could also associate an
initial index with the packet data. The initial index could
include information related to the source, the destination, and
the time of arrival of the packet data. The system could also
include a processing module to process the packet data
according to the query type and the initial index.

In one embodiment, the present disclosure could provide a
method of managing packet data in a network. The method
could include parsing incoming packet data according to a
query type. The method could also include initially indexing
the packet data according to source related information, des-
tination related information, and time related stamp related
information associated with the packet data. The method
could also include processing the packet data according to the
query type and the initial indexing.

In one embodiment, the present disclosure could provide a
database manager. The database manager could include a
virtual manager associated with a server to parse incoming
packet data according to a query type. The virtual manager
could also associate an initial index with the packet data. The
database manager could also include a processing module to
process the packet data according to the query type and the
initial index. The processing module could use the largest
offset value associated with the information related to the

10

15

20

25

30

35

40

45

50

55

60

65

2

source, the destination, or the time of arrival of the packet data
to further index the packet data.

Other technical features may be readily apparent to one
skilled in the art from the following figures, descriptions, and
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of this disclosure and
its features, reference is now made to the following descrip-
tion, taken in conjunction with the accompanying drawings,
in which:

FIG. 1 is a simplified illustration an exemplary database
management system according to one embodiment of the
present disclosure;

FIG. 2 is an exemplary illustration of subsystems associ-
ated with the database server shown in FIG. 1 according to
one embodiment of the present disclosure; and

FIG. 3 is an exemplary illustration of a method of process-
ing network packet data using the database management sys-
tem according to one embodiment of the present disclosure.

DETAILED DESCRIPTION

Embodiments of the present disclosure generally provides
systems and methods that reduce the execution time to search
and process queries in large databases of static data while
using minimum file storage or disk access.

FIG. 1 is a simplified illustration an exemplary database
management system 100 according to one embodiment of the
present disclosure. It should be understood that database
management system 100 shown in FIG. 1 is for illustrative
purposes only. Any other suitable system or subsystem could
be used in conjunction with or in lieu of database manage-
ment system 100, according to one embodiment of the present
disclosure.

Database management system 100 could include one or
more network resource objects 102a, 1025, and 102¢ (collec-
tively referred to herein as network resource objects 102).
Network resource objects 102 could, for example, generate
network traffic to database server 106 and any other network
device. In one embodiment, network resource objects 102 are
configured to process data or otherwise output network
packet data such as, for example, binary network packet data,
to other parts of database management system 100.

It should be understood that network resource objects 102
could be any suitable object or group of objects to process any
suitable type of data. For example, network resource objects
102 could include any suitable device including, for example,
a server, user terminal, stand-alone unit, network device,
database, module, application, software, scanner, printer,
modem, facsimile machine, backup database, telephone sys-
tem, router, Internet portal, Intranet portal, remote access
portal, other suitable device, area, or database, or any combi-
nation thereof.

In one embodiment, network resource objects 102 could
also be used to group certain devices by departments, man-
agement levels, users, employees, security clearances, prior-
ity levels, other suitable groups, or any combination thereof.
For example, users belonging to a particular department,
management group, security clearance group, or specialty
within an enterprise could be grouped into one of “network
resource objects” 102.

Database management system 100 could also include data-
base server 106, virtual machine 108, and any suitable sub-
systems as later shown and described herein in conjunction
with FIG. 2. It should be understood that although database

US 9,172,595 B2

3

server 106 and virtual machine 108 are shown as part of a unit,
each could be a separate entity. Database server 106, virtual
machine 108, or any other suitable system or subsystem could
be used in conjunction with or in lieu of virtual machine 108.
In addition, it should be understood that network packet data
104 could include any data capable of being transmitted from
network resource objects 102 to database server 106. For
example, network packet data 104 could include binary
packet data.

Database server 106 could generally include any server,
group of servers, databases, memories, applications, soft-
ware, computer programs, routines, other objects, or any
combinations thereof. In one embodiment, database server
106 is generally configured to receive and process network
packet data 104, query requests, and output any data as nec-
essary as later described in detail herein.

Virtual machine 108 could generally include any virtual
object, server, group of servers, databases, memories, appli-
cations, software, computer programs, routines, other suit-
able objects, or any combinations thereof. In one embodi-
ment, virtual machine 108 could be configured to process raw,
network packet data such as, for example, binary packet data,
from database server 106 as later described in detail herein.

In general, communications between network resource
objects 102 and database server 106 could be transparent to
the user. For example, such communications could be con-
ducted using standard message objects over a brokered, load-
balanced virtual circuit using an instance per process, rather
than an instance per connection. In one embodiment, data-
base management system 100 could use a transparent com-
munications layer and requests are sent to database server 106
without first requiring a connection. Preferably, queries into a
network associated with database server 106 are generally
first built on the client side and then directed at database
server 106.

Network resource objects 102, database server 106, and
virtual machine 108 could be configured to communicate
with other elements of database management system 100
with the aid of dedicated network connections, wire-line con-
nections, wireless connections, other suitable communica-
tion links, or any combination thereof. For example, database
server 106 could facilitate the processing of incoming queries
and could provide output data as requested over the Internet or
partly over the Internet.

When database management system 100 receives a query
or network packet data 104, database server 106 could gen-
erally store each network packet data 104 in separate direc-
tories based on how the network packet data 104 was
received. For example, in accordance with one embodiment
of'the present disclosure, if a particular sensor associated with
the database management system 100 initially received the
network packet data 104, then that network packet data 104
could be stored with other queries received from that sensor.

In one embodiment, after database management system
100 receives network packet data 104 or packages of network
packet data 104, database server 106 and virtual machine 108
program could initially index that particular network packet
data 104. For example, network packet data 104 could be
indexed or otherwise named with the date and time of its
creation. Database management system 100 could generally
use these indices in a unique way to store, access, and process
the associated package and does not necessarily require any
other indices to do the same.

In one embodiment, when network packet data 104 is
stored in database server 106, three indices could be created.
The three indices could include one based on the Internet
protocol (IP) address or other information related to the

10

15

20

25

30

35

40

45

50

55

60

65

4

source, the second based on the IP address or other informa-
tion related to the destination, and the third based on time
stamp information associated with network packet data 104.
Database server 106 and its subsystems shown in FIG. 2 could
then process the indexed queries associated with network
packet data 104 to satisfy the requested query.

FIG. 2 is an exemplary illustration of subsystems of data-
base server 106 shown in FIG. 1 according to one embodi-
ment of the present disclosure. It should be understood that
database server 106 shown in FIG. 2 is for illustrative pur-
poses only and that any other suitable system or subsystem
could be used in conjunction with or in lieu of database server
106 or its subsystems according to one embodiment of the
present disclosure.

Database server 106 could include certain subsystems or
otherwise be associated with parser 202, query engine 204,
retrieval engine 206, data manager 208, and file processor
210. Database management system 100 and database server
106 could also include application-programming interface
(API) not shown in FIG. 2. Database server 106, parser 202,
query engine 204, retrieval engine 206, data manager 208, file
processor 210, API, and virtual machine 108 could commu-
nicate with each other with the aid of dedicated network
connections, wire-line connections, wireless connections,
other suitable communication links, or any combination
thereof.

After database server 106 receives network packet data 104
or query from one of network resource objects 102, database
server 106, and virtual machine 108 could initially index
information associated with or related to the source, destina-
tion, and time stamp information associated with the query as
described earlier in conjunction with FI1G. 2. The native query
information and the indexed values could be stored in or
otherwise accessible from a storage device stored in or acces-
sible by data manager 208. The indexing, thus, allows for
efficient and relatively easy organizing, storing, and fast
retrieval of data related to such queries.

The query could include a data retrieval request, a data
management request, or other instruction in standardized
retrieval language. The query could be passed to parser 202
for further processing and indexing. In one embodiment,
parser 202 could generally convert the data retrieval request,
data management request, or other instruction to, for
example, a binary format, and then attempt to validate the
data. For example, parser 202 could determine all possible
indexes for a particular network data packet 104 to aid in
organizing the storage and processing of that particular net-
work data packet 104.

In one embodiment, parser 202 could index a particular
network data packet 104 by using information associated
with network data packet 104. Parser 202 could determine the
largest offset in network data packet 104 possible to eventu-
ally bypass as much data as possible. For example, parser 202
could determine all source information, destination informa-
tion, or time information from the query and examine net-
work data packet 104. Parser 202 could then find the furthest
point in network data packet 104 that contains all the data
necessary to perform the query. The furthest point could be
found by determining the file offset (in bytes of each data
point) and selecting the largest possible offset that still meets
all the requirements.

In addition, using proprietary query language, parser 202
could be configured to write and execute two general types of
programs (e.g., an IP lookup program and an actual packet-
processing program) depending on the type of query
requested. For example, parser 202 could identify whether the
query is a data management only query or if it contains query

US 9,172,595 B2

5

language requesting data retrieval. If the query is a data man-
agement only query, data manager 208 in one embodiment
manages the query request and attempts to satisfy the query
request. Otherwise, in one embodiment, query engine 204
could further analyze or parse the query into a particular data
retrieval query structure or sub-structures to satisty the query
request.

In the first case, where the query involved is only a data
management request, parser 202 could pass the query to data
manager 208, which manages the process going forth. Data
manager 208 could then analyze the query and request the
retrieval engine 206 to create a qualifying file list that could
satisfy the query using customized threads, routines, or other
computer programs to specifically search for particular indi-
ces or types of data. The threads could request additional
packet information to aid in populating the qualifying file list
accordingly. In addition, the threads could correlate any input
result sets to aid in populating the qualifying file list.

In one embodiment, data manager 208 could wait for the
threads to terminate, assemble information related to each
thread, and perform the data management request. For
example, the data management request could include storage
of' new data, indexing of new data, removal of data that is no
longer necessary, compression of data, decompression of
data, generating a list of available data, caching data in fast
access memory, or other data management routine.

In the second case, where the query involved is something
other than a data management request such as for example, a
data retrieval request, query engine 204 could analyze the
proprietary query language to parse the query into appropri-
ate query structures. Query engine 204 could generally take
the formatted query or instruction and dispatch one or both to
the required module for further processing. For example,
query engine 204 could dispatch data management queries to
data manager 208, while dispatching packet requests or que-
ries to retrieval engine 206.

Retrieval engine 206 could, in turn, execute customized
threads, routines, or other computer programs to specifically
search for data to execute the requested query against.
Retrieval engine 206 could generally receive a formatted data
packet request or query and perform post-processing func-
tions associated with the request or query. For example,
retrieval engine 206 could request the appropriate data from
data manager 208 as required. Retrieval engine 206 could
build a virtual table to aid in matching a series of data packets
together pulling data from multiple places and combining
them into a list of data sources.

Retrieval engine 206 could generally process the propri-
etary language query by listing, for example, the requested
hour(s) (i.e., packets accumulated in files representing an
hour’s traffic). Retrieval engine 206 could then build a virtual
table of data that matches the query request type from dispar-
ate data types and launch a different threat for each hour file.
Next, retrieval engine 206 could wait for the threads to exit
and then merge the result sets. Retrieval engine 206 could
then call the virtual machine (described in later herein) for
post processing. After the threads terminate, retrieval engine
206 could compile information related to each thread and
pass the compiled information to virtual machine 108 to
further process the compiled information and produce an
output result set that could satisfy the original query request.

In one embodiment, as query engine 204 analyzes the
proprietary query language to parse the query into appropri-
ate query structures, query engine 204 could additionally
make use of sub-structures. A sub-structure of the query pro-
prietary language, generally called POST_PROCESS herein,
could contain the actual program instructions for an embed-

10

15

20

25

30

35

40

45

50

55

60

65

6

ded software computer known as virtual machine 108. Each
POST_PROCESS instruction has six fields, “oper”, “regl”,
“fid1”, “reg2”, “fld2”, and “val.” Parser 202 examines the
query and builds an appropriate program for virtual machine
108 to properly process the request. The “oper” field contains
an integer value associated with virtual machine 108. Each
value could relate to a specific instruction from virtual
machine 108 with “regl”, “vall”, “reg2”, and “val2” as reg-
isters and values within the embedded software computer.

In one embodiment, virtual machine 108 could execute
instructions to inputs from the input result set, output to the
output result set, a number of arithmetic instructions, and a
number of conditional branches based on arithmetic results.
In one embodiment, virtual machine 108 could perform arith-
metic instructions including, for example, immediate value
load, add, subtract, multiply, divide, min, max, and standard
deviation. One unique instruction, used only in lookup execu-
tion, could allow lookup of IP values in a specific index.

In one embodiment, virtual machine 108 could make use of
a two-pass compiler and two runtime master loops, one with
tracing and one without. Parser 102 writes a symbolic pro-
gram in virtual machine’s 108 native assembly language
using integer values to represent operations, registers, and
values. Virtual machine 108 could then convert the symbolic
program into a form directly executable by virtual machine
108. Virtual machine 108 could include having access to an
input result set, a general register file, and an output result set.
The input result set and output result set contain a linked list
of network packets.

A result set is generally a set of fields selected from the
virtual table having actual data from each packet matching the
selection criteria. An input packet could generally contain
those fields selected from the virtual table of matching input
packets. An output packet could, on the other hand, output the
output result set and includes fields that could have been in an
input packet or are values calculated by instructions from
virtual machine 108.

In one embodiment, the general register file could have five
registers, each with approximately thirty-five fields that cor-
respond to all possible fields in network packet data 104. This
could generally allow virtual machine 108 to store any data
contained in packet data 104 as fields that are unassociated
with the position in the actual packet by the number of reg-
isters the software is configurable to handle even larger data
sets or made smaller to use less resources depending on the
expected data. Accordingly, general register file generally
acts as a general purpose register for virtual machine 108 to
store data necessary for calculations such as counting, group-
ing, arithmetic operations, comparisons, etc.

In one embodiment, Register0 of the general register file
could be mapped to the fields of the most recently used input
data packets. For example, Register0 could contain the “next
packet” after an input instruction has executed. The other four
registers of the general register file could be groups of 32-bit
integers, each having one per field. In one embodiment, vir-
tual machine 108 could include a compiler that translates
each of these integers into the corresponding function pointer
within the host code.

In addition, virtual machine 108 could provide a “virtual
machine instruction” (e.g., a ‘C’ programming function) that
accepts two arguments, a pointer to the database packet post
process structure and a pointer to the specific instruction (i.e.,
POST_PROCESS) being executed. These instructions could
be called from a simple ‘while’ instruction and from a loop of
instructions when tracing is invoked. Tracing provides high-
level details of how the system is handling any given request
and is useful for debugging or query optimization. In addi-

US 9,172,595 B2

7

tion, special functions could be available to facilitate writing
virtual instructions. The database packet post process struc-
ture could be built before compilation and could contain the
original query, the program instructions, pointers to the input
and output result sets, the register file, and numerous other
counts and flags necessary for generating the result set as
specified in the query.

In one embodiment, virtual machine 108 could include a
compiler having two passes and output map building. The
first pass could scan the source program and remembers each
label instruction’s number and program counter location. The
second pass could convert the target field in each branch
instruction to the real program counter location of the label.
The output map-building phase could create a map from input
packet fields to output packet fields to handle any combina-
tion of input fields to output fields depending on the requested
input fields and output fields, without regards to sort order. In
other words, any output field in the general and output regis-
ters could store any field including, for example, calculated
fields or other virtual fields not actually in the packet.

In one embodiment, database management system 100
could include API configured to support client side “C”,
Perl-based applications, or any other application language.
For example, in one embodiment, API could be contained in
a single Perl module to interface with database management
system 100. In one embodiment, API could be patterned after
the database interface for Perl applications while still main-
taining an interface for database management system. Using
API, statements could be prepared and executed with argu-
ments, and then records are fetched. However, unlike the
conventional database interfaces, API could include connec-
tions that are not database specific. For example, any sensors
associated with database server 106 could be queried with a
single prepared statement.

FIG. 3 is an exemplary illustration of method 300 to pro-
cess network packet data in the database management system
100 shown in FIG. 1 and using database server 106 and
related systems shown in FIG. 2 according to one embodi-
ment of the present disclosure. It should be understood that
method 300 shown in FIG. 3 is for illustrative purposes only
and that any other suitable method or sub-methods could be
used in conjunction with or in lieu of method 300 according to
one embodiment of the present disclosure.

Method 300 could include receiving a query in step 302.
For example, database server 106 could receive a query (e.g.,
network packet data 104) from one of network resource
objects 102 shown in FIG. 1. As described earlier, it should be
understood that any suitable network packet data 104 includ-
ing, for example, a binary network packet data according to
one embodiment of the present disclosure.

In step 304, method 300 could initially index the query and
store the native or original query and associated index for
future use. For example, method 300 could use database
server 106 and virtual machine 108 shown in FIG. 1 to ini-
tially index information associated with or related to the
source of the query, the destination of the query, and the
length or time of the query. The native or original query and
the associated initial indexing set could be stored in or other-
wise accessible from a virtual table accessible by data man-
ager 208 shown in FIG. 2. In one embodiment, the indexes
could aid in efficiently and easily analyzing, accessing, and
retrieving the query from the virtual table accessible by data
manager 208.

In step 306, method 300 could include passing the original
query and the initial indexing set to a parser module for
further processing. For example, the query tagged with the
initial indexing set could be passed to parser 202 shown in

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 2 for further processing. Parser 202 could then write a
symbolic program that, when compiled and executed by vir-
tual machine 108 in step 322, uses the indices to find the best
starting part in the packet data to eliminate as much stored
data and, therefore, disk input/output (I/O), as possible.

In step 308, method 300 could include determining the type
of query requested and what further processing could be
required to carry out the query. For example, parser 202 could
analyze the query and determine if the query is a data man-
agement query. If so, parser 202 passes the query to data
manager 208 for further processing in step 310 according to
one embodiment of the present disclosure. Otherwise, if the
query is not a data management query, method 300 continues
with step 320 described later herein.

Assuming that the query is a data management request,
following step 310, method 300 could include further pro-
cessing the query using a data manager module. In one
embodiment, data manager module 208 shown in FIG. 2
could manage the query request and attempt to satisfy the
query request.

In step 312, data manager module 208 could first use
retrieval engine 206 shown in FIG. 2 to request a qualifying
file list using customized threads. In one embodiment, the
qualifying file list ideally should include all data files that
potentially satisfy the query request. For example, retrieval
engine 206 could search for different indexes associated with
the query request by creating and using different threads,
routines, or other computer programs to specifically search
for particular indexes or types of data satisfying the query
request. By running such threads, retrieval engine 206 could
populate the qualifying file list from the disparate online data
stores accordingly.

In step 314, retrieval engine 206 waits for the threads to
terminate and compiles information related to each thread.
Data manager 208 returns the required data, a list of files that
match a certain data and time criteria, the name of the data-
bases with the data store, or other data management informa-
tion.

In step 316, method 300 could continue formatting the
result set into a final result set by creating a virtual table
containing the fields from data manager 208. In one embodi-
ment, after the result sets are compiled, retrieval engine 206
merges the result sets into a single result set.

In step 318, method 300 could include post processing the
result set to format it as specified by the original query.
Method 300 could then analyze the input result set and pro-
duce an output result set to satisfy the original data manager
query request received in step 302 and identified in step 308.

If, on the other hand, in step 308, parser 202 recognizes that
the query is not simply a data manager query request but
includes proprietary query language, the query is parsed fur-
ther by query engine 204 in step 320. In one embodiment,
query engine 204 could then parse the query into a particular
query structure.

In step 322, method 300 continues by passing the query
structures to retrieval engine 206, which in turn executes
threads, routines, or other computer programs to specifically
search for and identify data to execute the query against.
Retrieval engine 206 first uses data manager 208 to compile a
list of data files of packet data to use for the request using, for
example, the date and time range specified in the query or a
default if it is not present. Retrieval engine 206 then creates a
thread for each data file that runs its own virtual machine 108
inside file processor 210. Virtual machine 108 uses the indices
to find any starting data and process all of the packets, to map

US 9,172,595 B2

9

the results to an output, to perform any necessary calcula-
tions, to perform any post-processing, and to perform any
groupings.

In step 324, in one embodiment, retrieval engine 206 waits
for the threads to terminate and then compiles information
related to each thread. In other words, retrieval engine 206
retrieves data from all threads by selecting the data in sort
order from the thread data sets as specified by the original
query from step 302. By selecting the data in sort order,
retrieval engine 206 could avoid additional sorts and build a
single result set automatically in sorted order.

In step 326, method 300 continues with virtual machine
108 post-processing the compiled information. Post-process-
ing could include, for example, compiling and executing the
symbolic program as programmed by parser 202. In addition,
virtual machine 108 could retrieve and analyze the processed
information and produces an output result set to satisty the
original query request received in step 302 and identified in
step 308.

It should be understood that the steps included in method
300 either in its entirety, any individual step, series of steps, or
set of steps could be repeated, performed in any order, or
simultaneously performed according to one embodiment of
the present disclosure.

Accordingly, embodiments of the present disclosure gen-
erally provide a database management system designed to
execute searches over very large databases of static data
quickly, while using minimum file storage or disk access. In
one embodiment, the present disclosure is particularly appli-
cable to network packet data collected on a computer net-
work.

It should be understood, however, that although applica-
tions of the present disclosure employ a database manage-
ment system to speed processing of network packet data,
embodiments of the present disclosure could be used to
increase execution times in any other application having volu-
minous data stored within a database of disparate data. For
example, embodiments of the present disclosure could be
used in a variety of applications involving network security,
e-commerce transactions, identity verification transactions,
credit card transactions, and the like.

It may be advantageous to set forth definitions of certain
words and phrases used in this patent document. The term
“couple” and its derivatives refer to any direct or indirect
communication between two or more elements, whether or
not those elements are in physical contact with one another.
The terms “include” and “comprise,” as well as derivatives
thereof, mean inclusion without limitation. The term “or” is
inclusive, meaning and/or. The phrases “associated with” and
“associated therewith,” as well as derivatives thereof, may
mean to include, be included within, interconnect with, con-
tain, be contained within, connect to or with, couple to or
with, be communicable with, cooperate with, interleave, jux-
tapose, be proximate to, be bound to or with, have, have a
property of, or the like.

While this disclosure has described certain embodiments
and generally associated methods, alterations and permuta-
tions of these embodiments and methods will be apparent to
those skilled in the art. Accordingly, the above description of
example embodiments does not define or constrain this dis-
closure. Other changes, substitutions, and alterations are also
possible without departing from the spirit and scope of this
disclosure, as defined by the following claims.

20

40

45

10

What is claimed is:

1. A method, comprising:

receiving a plurality of data packages at one or more hard-

ware database servers, each of the plurality of data pack-
ages including a plurality of packets:

receiving a query that includes one or more selection cri-

teria;

indexing the query to generate an initial indexing set;

creating, using the one or more hardware database servers,

one or more lists of one or more packets for each of the
plurality of data packages, the one or more lists config-
ured to index a sequence of packets within each of the
plurality of data packages by source address information
and destination address information, the one or more
lists indicating, for each of the plurality of data pack-
ages, an offset of each of: (a) a first packet and a last
packet in the sequence that contains given source
address information, and (b) a first packet and a last
packet in the sequence that contains given destination
address information, the one or more lists further con-
figured to allow the one or more hardware database
servers to bypass packets within each of the plurality of
data packages during execution ofthe query using one or
more of the offsets, each of the offsets provided as a
number of bytes;

storing both the query and the initial indexing set;

passing both the query and the initial indexing set to a

parser to generate a symbolic program;
compiling and executing the symbolic program to retrieve,
by the one or more hardware database servers and based
at least in part upon the one or more lists, one or more
packets that satisfy the query, wherein retrieving the one
or more packets includes executing a plurality of threads
to satisfy the query;
creating a table, using the one or more hardware database
servers, that includes data from each retrieved packet
matching the one or more selection criteria; and

combining results from the plurality of threads to generate
a final result of the query.

2. The method of claim 1, wherein the packets within each
of the plurality of data packages are stored in a sequence
according to an order of their arrival at a respective network
device.

3. A system, comprising: a hardware database server, the
hardware database server configured to:

store a plurality of data packages, each of the plurality of

data packages including a sequence of packets;

receive a query, the query including selection criteria;

index the query to generate an initial indexing set;

storing both the query and the initial indexing set;

create one or more lists of one or more packets for each of

the plurality of data packages, the one or more lists
configured to index a sequence of packets within each of
the plurality of data packages by source address infor-
mation and destination address information, the one or
more lists indicating, for each of the plurality of data
packages, an offset of each of: (a) a first packet and a last
packet in the sequence that contains given source
address information, and (b) a first packet and a last
packet in the sequence that contains given destination
address information, the one or more lists further con-
figured to allow the one or more hardware database
servers to bypass packets within each of the plurality of
data packages during execution ofthe query using one or
more of the offsets, each of the offsets provided as a
number of bytes;

US 9,172,595 B2

11

pass both the query and the initial indexing set to a parser

to generate a symbolic program;
compile and execute the symbolic program to retrieve, by
the one or more hardware database servers and based at
least in part upon the one or more lists, one or more
packets that satisfy the query, wherein retrieving the one
or more packets includes executing a plurality of threads
to satisfy the query;
create a table, using the one or more hardware database
servers, that includes data from each retrieved packet
matching the one or more selection criteria; and

combine results from each of the plurality of threads to
generate a final result of the query.

4. The system of claim 3, wherein the packets in each of the
plurality of data packages are stored in order of their arrival at
a respective network device.

5. The system of claim 4, the hardware database server
further configured to: launch a separate thread for each of the
plurality of data packages, each of the separate threads con-
figured to execute the query with respect to each correspond-
ing data package using an indexed list, the indexed list index-
ing the sequence of packets within each of the plurality of data
packages by at least one of: source address or destination
address, the indexed list including, for each of the at least one
of the source address or destination address, an offset, con-
figured to enable each of the separate threads to bypass as
many packets as possible that do not match the selection
criteria within a respective data package;

wherein, for each of the plurality of data packages, the

indexed list includes the offsets of a first packet in the

10

15

20

25

12

sequence that contains a given source address and of a
last packet in the sequence that contains the given source
address.

6. The system of claim 5, wherein, for each of the plurality
of'data packages, the indexed list includes the offsets of a first
packet in the sequence that contains a given destination
address and of a last packet in the sequence that contains the
given destination address.

7. The system of claim 5, wherein each of the plurality of
data packages includes packets of disparate data types.

8. The system of claim 7, wherein the indexed list includes
data contained in a given packet as fields in positions that are
unassociated with their actual positions in the given packet.

9. The method of claim 1, wherein combining the query
results includes creating a table that excludes fields of packets
that are not responsive to the query.

10. The method of claim 1, wherein the one or more selec-
tion criteria include a requested time, the method further
comprising:

selecting data packages corresponding to the requested

time; and

launching by the plurality of threads for the selected data

packages.

11. The method of claim 10, wherein each of the data
packages corresponds to an hour’s traffic, the method further
comprising, in response to the requested time being greater
than one hour, selecting two or more data packages from
different network devices.

#* #* #* #* #*

